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(57) ABSTRACT

Object recognition apparatus and methods useful for extract-
ing information from sensory input. In one embodiment, the
input signal is representative of an element of an image, and
the extracted information is encoded in a pulsed output signal.
The information is encoded in one variant as a pattern of pulse
latencies relative to an occurrence of a temporal event; e.g.,
the appearance of a new visual frame or movement of the
image. The pattern of pulses advantageously is substantially
insensitive to such image parameters as size, position, and
orientation, so the image identity can be readily decoded. The
size, position, and rotation affect the timing of occurrence of
the pattern relative to the event; hence, changing the image
size or position will not change the pattern of relative pulse
latencies but will shift it in time, e.g., will advance or delay its
occurrence.
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APPARATUS AND METHODS FOR
PULSE-CODE INVARIANT OBJECT
RECOGNITION
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rated herein by reference in its entirety.

COPYRIGHT
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tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to object recogni-
tion and identification in a computerized processing system,
and more particularly in one exemplary aspect to a computer
vision apparatus and methods of pulse-code invariant object
recognition.

2. Description of Related Art

Object recognition in computer vision is the task of finding
a given object in an image or video sequence. It is often
desired to recognize objects invariantly with respect to object
parameters, such as position, size, or orientation. Typically,
an object of interest is identified in a visual field, and a variety
of transformations is performed (e.g., scale, translation, etc.)
in order to transform a “raw” object to a preferred, optimal, or
canonical form for subsequent analysis. Such approach gen-
erally requires a mechanism of rough estimation of the loca-
tion of the raw object of interest in a visual field that often
contains additional “‘unwanted’ objects, such as for example
noise, background, and other distracters that complicate or
impede object recognition efforts.

Other object recognition techniques rely on a matched
filter approach. Under this approach, objects are detected by
a bank of filters, with each filter tuned to a particular object
type, size, and/or location. Therefore, the filter produces an
output signal when it detects a “match’ in an incoming signal.
Matched filter techniques require a multitude of filters, as
they must be placed at multiple locations where the object can
be present; each location requires filters tuned to different size
of the object, and possibly different rotation. This is per-
formed for every object of interest, so the matched filter
technique scales poorly as the number of objects of interest
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increases, as redundant filters for all possible parameters of
the object (e.g., size, orientation, and location) are required.

Accordingly, there is a salient need for a computerized
object recognition solution that offers a lower cost and com-
plexity, yet which is capable of dealing with many objects
having different parameters.

SUMMARY OF THE INVENTION

The present invention satisfies the foregoing needs by pro-
viding, inter cilia, apparatus and methods for pulse-code
invariant object recognition.

In one aspect of the invention, an apparatus configured for
object recognition is disclosed. In one embodiment, the appa-
ratus is configured to receive a first visual signal representa-
tive of an object, an encoder configured to encode the first
visual signal into a plurality of pulses, and a one or more
detectors coupled by a plurality of transmission channels to
the encoder such that each of the of transmission channels is
associated with a delay configured to effect a coincident
arrival of at least two of the plurality of pulses to at least one
of the detectors. The information related to identity of the
object is encoded into a pattern of latencies of the plurality of
pulses relative to one another, and a parameter associated
with the object is encoded into a group delay that is common
to all pulses within the plurality of pulses and the coincident
arrival of the pulses is substantially invariant to a change in a
value of the parameter. In one variant, at least a portion of the
plurality of transmission channels is configurable to be
adjusted based at least in part on a second input signal, the
second input signal temporally preceding the first visual sig-
nal.

In another variant, the apparatus further includes a user
interface configured to generate an indication and a controller
configured to generate a signal responsive to the coincident
arrival.

In another aspect of the invention, an apparatus configured
to encode a signal representative of an object is described. In
one embodiment, the apparatus includes an encoder config-
ured to encode the first input signal into a plurality of pulses,
such that information related to identity of the object is
encoded into a pattern of latencies of the plurality of pulses
relative to one another; and a parameter associated with the at
least a portion of the object is encoded into a group delay that
is common to all pulses within the plurality of pulses. In one
variant, the object parameter is one or more of position, size,
and orientation of the at least a portion of the object.

In another embodiment, the apparatus comprises at least
one detector coupled to the encoder via a plurality of chan-
nels, the plurality of channels forming a plurality of connec-
tions. The plurality of pulses is configured for transmission
through at least a subset of the plurality of connections, and
each ofthe plurality of connections is associated with a delay
configured to effect a coincident arrival of at least two of the
plurality of pulses to at least one detector invariantly to a
change in a value of the parameter.

In one variant, information related to two different param-
eters of the atleast a portion of an object is transmitted via two
different subsets of the plurality of connections. A first plu-
rality of delays corresponds to a first subset of the two differ-
ent subsets and a second plurality of delays corresponds to a
second subset of the two different subsets, the first plurality of
delays is not identical to the second plurality of delays.

In another embodiment, the detector is configured to gen-
erate a detection signal based at least in part on the coincident
arrival and the apparatus further comprises a processing appa-
ratus coupled to the detector and configured to receive the
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detection signal and to generate a response, the detection
signal having a detection signal latency configured based at
least in part on the group delay; and the response configured
invariantly with respect to the parameter.

In one variant, at least a portion of the plurality of connec-
tions is channels is configurable to be adjusted based at least
in part on a second input signal, the second input signal
temporally preceding the first input signal.

In another variant the plurality of channels comprises one
or more virtual channels carried in a physical transmission
medium.

In another variant, the apparatus further includes a control
interface, the interface configured to provide an interface
signal based at least in part on a detection of a predetermined
parameter in the first signal, the interface signal adapted for
delivery to an apparatus selected from the group consisting of
(1) robotic apparatus; and (ii) prosthetic apparatus.

In yet another variant, each of the plurality of pulses is
generated at least in part responsive to an event selected from
the group consisting of (i) a temporal change in the first input
signal; (ii) a spatial change in the first input signal; (iii) a
trigger; and (iv) a timer alarm related to a second event, the
second event preceding the event, and the group delay is
configured based at least in part on the event.

In another variant, the encoder comprises a preferred
parameter range, and the group delay is selected responsive to
a deviation of the parameter from the preferred parameter
range.

In a third aspect of the invention, a method of encoding
information related to an object for use in a digital processing
apparatus is disclosed. In one embodiment, the method com-
prises receiving an input signal comprising a representation
of'the object, detecting at least a portion of the object, respon-
sive to the detecting, generating a plurality of pulses, encod-
ing information related to an identity of the object into a
pattern of latencies of the plurality of pulses, relative one
pulse to another pulse; and encoding a parameter associated
with the at least a portion of the object into a group delay that
is common to all pulses within the plurality of pulses.

In one variant, the object parameter is one or more of a
position, size, and/or orientation of the object.

In another variant, the group delay is selected responsive to
a deviation of the parameter from a preferred parameter
range.

In another embodiment, the method further includes trans-
mitting the plurality of pulses through a plurality of channels
to at least one node, wherein each of the plurality of channels
is associated with a delay configured to cause a coincident
arrival of at least two of the plurality of pulses to the node
invariantly to a change in a value of the parameter.

In one variant, information related to two different param-
eters of the object is transmitted via respective ones of two
different subsets of the plurality of channels.

In another variant, the transmission of the plurality of
pulses is configured to cause at the least one node to generate
a detection signal based at least in part on the coincident
arrival and the method includes generating a response sub-
stantially invariant to the parameter, the response comprising
a detection latency configured based at least in part on the
group delay.

In another variant, at least a portion of the plurality of
channels is configurable to be adjusted based at least in part
based atleast in part on a second input signal, the second input
signal temporally preceding the first input signal.

In a fourth aspect of the invention, an image processing
system comprises a processor configured to execute instruc-
tions maintained in a storage medium; the instructions cause
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the processor to process a signal representative of at least a
portion of an image to extract and analyze information in the
signal.

In a fifth aspect of the present disclosure, a method of
encoding sensory information is disclosed. In one embodi-
ment, the method includes encoding an input comprising a
representation of a feature into a pulse group, the pulse group
being transmitted along a plurality of channels; where the
input comprises a visual image of the feature; wherein infor-
mation related to an identity of the feature is encoded into a
pattern of pulse latencies, relative one pulse to another within
the group; and encoding a parameter associated with the
feature into a group delay that is common to all pulses within
the pulse group and common to all channels within the plu-
rality of channels.

In one variant, the parameter includes one or more of a
position, size, and/or orientation of the feature.

Further features of the present invention, its nature and
various advantages will be more apparent from the accompa-
nying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a graphical illustration of encoding of an input
signal into a pattern of pulse latencies with respect to a tem-
poral event according to one embodiment of the invention.

FIG. 2 is a block diagram of a first exemplary embodiment
of'the apparatus for encoding and decoding of objects invari-
antly with respect to the object’s position according to the
invention.

FIG. 3 is a block diagram of a first exemplary embodiment
of'the apparatus for encoding and decoding of objects invari-
antly with respect to the object’s size.

FIG. 4 is a block diagram of a first exemplary embodiment
of'the apparatus for encoding and decoding of objects invari-
antly with respect to both size and location of the object.

FIG. 5 is a block diagram of an exemplary embodiment of
a hierarchal network of pulse detector nodes with a plurality
of delay lines according to the invention.

FIG. 5a is a logical flow chart illustrating one embodiment
of'the method of encoding and decoding of objects according
to the exemplary embodiment of FIG. 5.

FIG. 6 is a block diagram of a second exemplary embodi-
ment of encoding and decoding of objects invariantly with
respectto the position of the object according to the invention.

FIG. 7 is a block diagram of a second exemplary embodi-
ment of the apparatus for encoding and decoding of objects
invariantly with respect to their size.

FIG. 8 is a block diagram of a second exemplary embodi-
ment of the apparatus for encoding and decoding of objects
invariantly with respect to their size and position.

FIG. 9 is a block diagram of an exemplary embodiment of
the apparatus for encoding and decoding of two-dimensional
objects invariantly with respect to their size.

FIG.101s a block diagram of an exemplary embodiment of
the apparatus for encoding and decoding of objects invariant
with respect to their rotation according to the invention.

All Figures disclosed herein are ® Copyright 2011 Brain
Corporation. All rights reserved.

DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the present invention will now be
described in detail with reference to the drawings, which are
provided as illustrative examples so as to enable those skilled
in the art to practice the invention. Notably, the figures and
examples below are not meant to limit the scope of the present
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invention to a single embodiment, but other embodiments are
possible by way of interchange of or combination with some
or all of the described or illustrated elements. Wherever con-
venient, the same reference numbers will be used throughout
the drawings to refer to same or like parts.

Where certain elements of these embodiments can be par-
tially or fully implemented using known components, only
those portions of such known components that are necessary
for an understanding of the present invention will be
described, and detailed descriptions of other portions of such
known components will be omitted so as not to obscure the
invention.

In the present specification, an embodiment showing a
singular component should not be considered limiting; rather,
the invention is intended to encompass other embodiments
including a plurality of the same component, and vice-versa,
unless explicitly stated otherwise herein.

Further, the present invention encompasses present and
future known equivalents to the components referred to
herein by way of illustration.

As used herein, the terms “computer”, “computing
device”, and “computerized device”, include, but are not lim-
ited to, mainframe computers, workstations, servers, personal
computers (PCs) and minicomputers, whether desktop, lap-
top, or otherwise, personal digital assistants (PDAs), hand-
held computers, embedded computers, programmable logic
devices, digital signal processor systems, personal commu-
nicators, tablet computers, portable navigation aids, J2ME
equipped devices, cellular telephones, smartphones, personal
integrated communication or entertainment devices, neuro-
computers, neuromorphic chips, or literally any other device
capable of executing a set of instructions and processing an
incoming data signal.

As used herein, the term “computer program” or “soft-
ware” is meant to include any sequence or human or machine
cognizable steps which perform a function. Such program
may be rendered in virtually any programming language or
environment including, for example, C/C++, C#, Fortran,
COBOL, MATLAB™, PASCAL, Python, assembly lan-
guage, markup languages (e.g., HTML, SGML, XML,
VoXML), and the like, as well as object-oriented environ-
ments such as the Common Object Request Broker Architec-
ture (CORBA), Java™ (including J2ME, Java Beans, etc.),
Binary Runtime Environment (e.g., BREW), and the like.

As used herein, the terms “connection”, “link”, “transmis-
sion channel”, “delay line”, “wireless” means a causal link
between any two or more entities (whether physical or logi-
cal/virtual), which enables information exchange between
the entities.

As used herein, the term “invariant” is meant to refer to,
without limitation, the response of a recognition system or its
components that is not substantially different when one or
more parameters of the incoming signal are varied. For
example, the system, or some of its subsystems, may generate
acomplex pattern of pulses in response to an input signal, and
changing parameters of the signal would not change substan-
tially the pattern of pulses, but only affect the time of its
generation.

As used herein, the term “memory” includes any type of
integrated circuit or other storage device adapted for storing
digital data including, without limitation, ROM, PROM,
EEPROM, DRAM, SDRAM, DDR/2 SDRAM, EDO/FPMS,
RLDRAM, SRAM, “flash” memory (e.g., NAND/NOR),
memrister memory, and PSRAM.

As used herein, the terms “microprocessor” and “digital
processor” are meant generally to include all types of digital
processing devices including, without limitation, digital sig-
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nal processors (DSPs), reduced instruction set computers
(RISC), general-purpose (CISC) processors, microproces-
sors, gate arrays (e.g., FPGAs), PLDs, reconfigurable com-
pute fabrics (RCFs), array processors, secure microproces-
sors, and application-specific integrated circuits (ASICs).
Such digital processors may be contained on a single unitary
IC die, or distributed across multiple components.

As used herein the term “pulse pattern”, “pattern of
pulses”, or “pattern of pulse latencies” is meant generally to
denote a set of pulses, arranged (in space and time) in a
predictable manner that is recognizable at a predetermined
level of statistical significance.

As used herein, the terms “pulse”, “spike”, “burst of
spikes”, and “pulse train” are meant generally to refer to,
without limitation, any type of a pulsed signal, e.g., a rapid
change in some characteristic of a signal, e.g., amplitude,
intensity, phase, or frequency, from a baseline value to a
higher or lower value, followed by a rapid return to the base-
line value and may refer to any of a single spike, a burst of
spikes, an electronic pulse, a pulse in voltage, a pulse in
electrical current, a software representation of a pulse and/or
burst of pulses, a software representation of a latency or
timing of the pulse, and any other pulse or pulse type associ-
ated with a pulsed transmission system or mechanism.

As used herein, the terms “pulse latency”, “absolute
latency”, and “latency” are meant generally to refer to, with-
out limitation, a temporal delay or a spatial offset between an
event (e.g., the onset of a stimulus, an initial pulse, or just a
point in time) and a pulse.

As used herein, the terms “pulse group latency”, or “pulse
pattern latency” refer to, without limitation, an absolute
latency of a group (pattern) of pulses that is expressed as a
latency of the earliest pulse within the group.

Asused herein, the terms “relative pulse latencies” refer to,
without limitation, a latency pattern or distribution within a
group (or pattern) of pulses that is referenced with respect to
the pulse group latency.

Asused herein, the term “pulse-code” is meant generally to
denote, without limitation, information encoding into a pat-
terns of pulses (or pulse latencies) along a single pulsed
channel or relative pulse latencies along multiple channels.

As used herein, the term “wireless” means any wireless
signal, data, communication, or other interface including
without limitation Wi-Fi, Bluetooth, 3G (e.g., 3GPP, 3GPP2,
and UMTS), HSDPA/HSUPA, TDMA, CDMA (e.g.,IS-95A,
WCDMA, etc.), FHSS, DSSS, GSM, PAN/802.15, WiMAX
(802.16), 802.20, narrowband/FDMA, OFDM, PCS/DCS,
Long Term Evolution (LTE) or LTE-Advanced (LTE-A), ana-
log cellular, CDPD, satellite systems such as GPS, millimeter
wave or microwave systems, optical, acoustic, and infrared
(i.e., IrDA).

Overview

The present invention provides, in one salient aspect, appa-
ratus and methods for detecting and recognizing objects and/
or object features invariantly with respect to one or more
parameters of the object. These parameters may include, inter
alia, distance/size, orientation, and position in the sensing
field. Many other parameters useful with the invention exist,
such as e.g., pitch for object/feature recognition in sound
signals, texture for tactile signals, and transparency and color
for visual objects. The object features may comprise, inter
cilia, individual edges, intersections of edges (such as cor-
ners), orifices, etc.

In one exemplary embodiment, the incoming signal is
encoded to produce a pulse-code output that only depends on
a predetermined object type. The output-encoding algorithm
is selected such that the output signal uniquely describes the
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identity of the object of interest. At the same time, the output
pulse-code pattern is substantially invariant to (i.e., does not
change with) a change of any of the object parameters (e.g.
size) that are irrelevant to determining object identity.

In one implementation, an input signal (e.g., an image
frame) is encoded into pulse-code output, such that object
identity (for example, shape) is encoded into a pattern of
pulses comprising a pulse-code group, and object parameters
(e.g., size) are encoded into an offset (lag) of the encoded set
with respect to an onset of the image frame. This advanta-
geously separates the relative pulse latency (within the pulse-
code set) from the absolute latency (the offset).

In another aspect of the invention, the encoded signal is
transmitted via multiple channels to a decoder, which
receives the pulsed signal and detects a coincident arrival of
pulses on two or more different channels. In one implemen-
tation, the decoder is configured to produce secondary infor-
mation, e.g., via encoding secondary information into the
timing of pulses in an output of the decoder. In another vari-
ant, a hierarchy of decoders is used to detect complex objects
that consist of combinations of elementary features and/or
combinations of simple objects.

The transmission characteristics of different channels, e.g.,
the conduction delay or the strength of transmission; i.e., the
strength of the impact of the incoming pulse onto the receiv-
ing unit, are adjusted adaptively based on the history of input
image, so that the system did not have the invariant recogni-
tion property initially, but then acquires it through learning
and adaptation.

In one implementation, the pattern of relative pulse laten-
cies is generated in the pulsed output signal upon occurrence
of one or more of a cyclic event, a clock signal, an internally
generated oscillatory wave, arrival of an input frame, appear-
ance of a new feature in the image and a time related to a
previous event.

Embodiments of object recognition functionality of the
present invention are useful in a variety of applications
including a prosthetic device, autonomous robotic apparatus,
and other electromechanical device requiring objet recogni-
tion functionality. In another implementation, portions of the
object recognition system are embodied in a remote server.

Detailed Description of Exemplary Embodiments

Detailed descriptions of the various embodiments and vari-
ants of the apparatus and methods of the invention are now
provided. Although certain aspects of the invention can best
be understood in the context of conversion of visual input into
pulse latency output and subsequent detection of objects of
interest independently of their size, position, or rotation,
embodiments of the invention may also be used for process-
ing of signals of other, often non-visual modalities, including
various bands of electromagnetic waves (e.g., microwave,
x-ray, infrared, etc.) and pressure (e.g., sound, seismic, tac-
tile) signals.

Embodiments of the invention may be for example
deployed in a hardware and/or software implementation of a
computer-vision system, provided in one or more of a pros-
thetic device, robotic device and any other specialized visual
system. In one such implementation, an image processing
system may include a processor embodied in an application
specific integrated circuit (“ASIC”), which can be adapted or
configured for use in an embedded application such as a
prosthetic device.

For the purposes of this description, insensitivity of signal-
to-pulse encoding with respect to position, size, and/or rota-
tion of an object in the input signal may be understood as
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encoding thatis invariant or substantially invariant to changes
in the object position, size, and/or rotation, distance (for
infrared or ultrasound waves), or pitch (for sound waves), etc.
Exemplary Encoding Apparatus

Referring now to FIGS. 1 through 10, exemplary embodi-
ments of the invariant pulse-code encoding apparatus and
methods of the invention are described. In one embodiment,
the apparatus and methods encode an object (or an object
feature such as, for example, a edge or a conjunction of' edges)
into a pattern of pulses and the parameters of the object, such
as scale, position, rotation, into the timing of the occurrence
of the pattern as described in detail below.

It is known in the field of neuroscience that neurons gen-
erate action potentials, often called “spikes”, “impulses”, or
“pulses” and transmit them to other neurons. Such pulses are
discrete temporal events, and there could be many pulses per
unit of time. Conventionally, bursts of a few spikes are con-
sidered to be pulses.

In one embodiment of the invention shown and described
with respect to FIG. 1, the input signal is presented as a
sequence of visual frames 100, 101, 102. The input signal
may be for example an image received from an image sensor
(such as a charge-coupled device (CCD) or a complementary
metal-oxide-semiconductor (CMOS) active pixel) camera or
downloaded from a file, or a two-dimensional matrix of red-
green-blue (RGB) three color model values (e.g., refreshed at
a 30 Hz or other frame rate). It will be appreciated by those
skilled in the art that the above image parameters are merely
exemplary, and many other image representations (e.g., bit-
map, cyan-magenta-yellow- and key (CMYK) four color
model, grayscale, etc.) are equally applicable to and useful
with the present invention.

The visual signal is transformed (encoded) into a group of
pulses (e.g., pulses 121-124 in FIG. 1), also referred to as
“pattern of pulses” that are transmitted along multiple com-
munication channels 111-114 using any of the mechanisms
described below. In the exemplary embodiment of FIG. 1
pulse latency is referenced with respect to an appearance of
the respective input frame (denoted by vertical broken lines
125, 135, 145 of FIG. 1) (for example, arrow 144 denotes the
latency of pulse 124 in FIG. 1). In one variant, an event
trigger, such as a sudden change in the visual signal (e.g., due
to a visual saccade or sudden movement of the image camera,
movement of parts of the visual signal, appearance or disap-
pearance of an object in the visual scene), or a clock signal,
are used as the temporal reference.

Pulse group latency is further defined as a latency of the
first pulse within the pulse code group; e.g., the pulse group
latency 160 corresponds to the latency of a pulse 121 of the
pulse group 131. In one variant, a small offset is added to the
latency 160 (as shown in FIG. 1) to allow for a possible pulse
timing jitter. Other implementations may be used as well,
such as measuring latency relative to some temporal event;
e.g., the appearance or a change ofthe input image, an internal
clock/timer alarm, or external trigger.

Pulse relative latency is then determined as the difference
between latencies of the two respective pulses within the
pulse group; e.g., the relative latency 150 is the difference of
latencies 144, 146 corresponds to the pulses 122,123, respec-
tively. In the embodiment of FIG. 1, the incoming frames are
encoded into a pattern of relative pulse latencies. As a result,
the pulse-code group 131 is an encoding representative of an
object in the input frame 100.

The encoding method of the exemplary embodiment of
FIG. 1 is configured such that objects of different type corre-
spond to a different relative pulse latency pattern. Specifi-
cally, input frames 100, 102 containing different objects (for
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instance, a rectangle 100 and a triangle 102) are encoded into
different patterns of relative pulse latencies 131, 133.

When encoding frames containing an object of the same
type (e.g., a rectangle 100, 101), the encoding method gener-
ates pulse-code groups 131, 132 having the same relative
pulse latency pattern as shown in FIG. 1.

At the same time, the encoding algorithm of FIG. 1 trans-
lates information related to object parameters (e.g., rectangle
size in frames 100, 101) into a temporal shift, also referred to
as the group lag, or group delay, of the pulse groups by a
different amount (160, 161), with respect to the onset of the
respective visual frame. As shown in FIG. 1, smaller rectangle
in the frame 100 corresponds to smaller group delay 160,
when compared to larger rectangle in the frame 101.

Thus, the exemplary encoding algorithm of the invention is
advantageously configured to decouple the identity of an
object, which is encoded into the pattern of relative pulse
latencies, from the parameters of the object (for example,
size, orientation, position) in the input signal, which are
encoded into the group lag of the pattern. This approach
significantly simplifies implementation of an object decoder
because, inter alia, the decoder can be configured to discrimi-
nate between objects of interest by matching relative pulse
latency patterns without being confused by the object size,
position, or orientation.

Advantageously, the exemplary approach described above
with respect to FIG. 1 encodes object information that is not
relevant to object type detection (e.g., size) into the group lag
(pulse code pattern time shift). This approach further allows
the encoder to skip additional steps, which are commonly
performed by existing prior art techniques relating to scaling,
rotation, and or translation of an incoming frame in order to
transform the input frame onto an optimal state. The exem-
plary embodiment of FIG. 1 further alleviates the need for
multiple (and often redundant) detectors that are tuned to
different parameter combinations for each object type: e.g.,
detectors spread over all possible locations and tuned to all
possible object sizes. These improvements translate into an
apparatus that requires fewer detectors and fewer processing
units, compared to the prior art, and allow taking advantage of
the combinatorial “richness™ of all possible pulse codes.
Invariant Object Encoding and Detection Via Delay Lines

FIG. 2 illustrates an exemplary embodiment of an encod-
ing apparatus that is configured to encode and detect objects
in a manner that is invariant of the object position. A one-
dimensional input signal is used in FIGS. 2-4 for illustration
purposes and without loss of generality. The exemplary
embodiment of FIG. 2 comprises a set of edge detectors 200,
each providing an input into the detector node 210 along
delay lines 201. Each delay lines 201 (also referred to as
transmission channels, or transmission lines) is associated
with a predetermined transmission delay (also referred to as
the propagation delay or the connection delay) value, denoted
for each edge detector 200 by a corresponding numeral (e.g.,
from 1 to 9 in this example). To refer to the specific pair of
detectors 200, the following notation is used hereinafter: a
detector pair with the line delay of 4 units is denoted as 200_4,
etc. Each edge detector 200 is configured to detect a change in
a certain property of the input signal (e.g., intensity), with
respect to a preceding detector, and to produce an output
signal when the change exceeds a predetermined threshold. It
will be appreciated by those skilled in the art that the above
edge detector can be implemented using many existing meth-
ods, e.g., linear Gabor filters and threshold-based detectors.

The exemplary embodiment of the detector apparatus (i.e.,
200,210)in FIG. 2 is configured to discriminate objects based
on their size (for example, length) and to produce an output
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pulse if an object of a predetermined size is present in the
input signal, invariant to the position of the object, provided
the object is within the sensing range of the edge detectors
200. The detector apparatus of FIG. 2 is configured to gener-
ate a zero output (e.g., remain in the base state with no output
pulses) when the input signal contains objects of a wrong type
or size.

When a stimulus, e.g., a bar 220 in FIG. 2, is present in the
input signal, the edge detectors that are closest to the edges of
the stimulus (edge detectors 200 with a line delay of 6 units)
detect the object edge, and generate output pulses (depicted in
205, which is often called a pulse raster), which propagate to
the detector node 210 with appropriate conduction delays
(e.g. 6 units). The detector unit 210 uses the received input
pulses to decode information about the stimulus objects by
acting as a coincidence detector. For example the detector
node 210, initially in a zero (FALSE) state, transitions to a
“TRUE’ state and generates a pulse output if the received
pulses are coincident (or nearly coincident with some allow-
able jitter). If the received pulses are not coincident, the
detector node 210 remains in the zero state. It will be appre-
ciated by these skilled in the art that the above coincident
detector can be implemented using many existing neuronal
models, e.g., the integrate-and-fire model, Hodgkin-Huxley
model, FitzHugh-Nagumo model, or quadratic integrate-and-
fire model, as well as others.

Returning now to FIG. 2, exemplary invariant image
encoding with respect to object position is described in detail.
Image encoding is present as pulse rasters 205, 206, 207,
where the time is plotted along the x-axis, and the pulses
arriving to the detector node along different transmission
delay lines are plotted along the y-axis. For clarity, the exem-
plary description of FIG. 2 is limited to object position
changes occurring in one dimension; i.e., along the vertical
y-axis. However, it is appreciated by those skilled in the art
that the apparatus and methodology described herein are
equally applicable to more generalized two-dimensional and
three-dimensional detection of object position.

When an object 221 is present in the sensing field of the
system, it causes the corresponding edge detectors (e.g.,
200_6) to generate pulses 231, 232, which propagate along
delay lines 215 and arrive to the detector 210 with the con-
duction delay of 6 units. Since both pulses arrive in coinci-
dence (with the same delay), the object detector 210 generates
an output signal 261 (here, a pulse corresponding to ‘one’)
with the latency equal or slightly greater than the propagation
latency of the pulse-pair (e.g., latency of 6 for the pulses 231,
232).

When the object is in a different location (for example, bar
222), it is sensed by a different set of edge detectors (200_3).
The detectors 200_3 generate pulses 241, 242, which propa-
gate along the delay lines 215 arrive to the object detector 210
in coincidence with the delay of 2 units. As a result, the object
detector 210 generates the output signal 262 with the latency
equal or slightly greater than 2 units. Note that the edge
detectors 200 of the exemplary embodiment presented in
FIG. 2 are configured such that the encoded pulse-pairs 231,
232, 241, 242 in rasters 205, 206, respectively, are nearly
synchronized in time. This configuration causes the detector
210 to generate a positive (TRUE) for both pulse rasters 205,
206, thereby effecting a position invariant object detection;
that is, the apparatus of FIG. 2 decodes objects in the input
signal of a certain preferred size regardless of their position.

The apparatus of FIG. 2 behaves quite differently when it
encounters an object of a different size within its sensing field.
A shorter bar 223 (as compared to the bars 221, 222) causes
edge detectors 200_6, 200_1 to generate pulses 251, 252 that
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propagate along the delay lines 215 and arrive to the object
detector 210 with different conduction delays of 6 and 2 units,
respectively. The detector 210 is configured to ignore non-
synchronous pulse pairs, thereby failing to elicit an output
signal. As a result, the object 223, which is of an inappropriate
size for the detector configuration 200, is ignored (not
detected) by the apparatus of FIG. 2. Notice that the edge
detectors used in the apparatus of FIG. 2 are but one possible
choice, and other elementary feature detectors such as e.g.,
line detectors of a predetermined orientation (in a two-dimen-
sional space), can be utilized as well, whether alone or in
conjunction with those depicted in FIG. 2.

It is appreciated by those skilled in the art that changes in
the object size (such as described above with respect to bars
221, 222) may also be caused by the change in the relative
orientation between the object and the plane of the detector
array 200, so that a size of an object projected onto the array
200 is different for two relative orientations, even when the
object size itself is the same (same identity). To discriminate
between projection changes due to rotation from the projec-
tion change due to object size, multiple sets of edge detector
arrays 200 (one set per each additional degree of freedom) can
be used. Object detection that is invariant with respect to
rotation is described in detail below with respect to FIG. 10.

FIG. 3 illustrates an embodiment of an apparatus according
to the invention that encodes and detects objects at a preferred
position, but invariantly with respect to the object size. Again,
a one-dimensional visual input signal for illustration pur-
poses and without loss of generality is used. Similar to the
exemplary apparatus of FIG. 2, the apparatus of FIG. 3 con-
tains a set of edge detectors 300 that are configured to gener-
ate output pulses only when an object change is present within
the sensing field of the detector 300. The delay lines 310 from
the edge detectors 300 to the object detector 310 are arranged
to generate pulse-pairs that arrive simultaneously to the
object detector node 310 (i.e., in pulse-pairs 331, 332 and
341,342 in rasters 305, 306, respectively), when an object of
any size (for example, length) is centered at the preferred
position, such as the middle of detector array 300. Synchro-
nous arrival of a pulse pair to the detector 310 elicits a detec-
tion output signal (e.g., pulses 361, 362) that correspond to
the bars 321, 322, respectively, that are located at the pre-
ferred position (the middle of the detector array 300).

An object of any size that is not centered at the detector
array 300 (e.g., bar 323) causes the detector 300 to generate
pulses 351, 352 in the raster 307 that arrive to the object
detector 310 with different lags; i.e. not simultaneously. As a
result, the detector 310 ignores the pulse pair 351, 352, and
the bar 323 is ignored by the apparatus of FIG. 3. This way, the
apparatus encodes the objects at certain preferred location
and decodes them regardless of their size.

It will also be appreciated that the distribution of conduc-
tion delays along the delay lines can be arranged in other
ways, and not necessarily in a monotone way (as in FIGS. 2
and 3), in order to achieve versatile encoding and decoding
schemes. For example, F1G. 4 illustrates an embodiment of an
apparatus that is invariant to both object size (at a certain
position) and to object position (of a certain object size). That
is, the object detector in FIG. 4 encodes the identity of the
object of a certain size at a certain location, and the latency of
the decoder output encodes the deviation from this certain
size and position.

To see how the objects in FIG. 4 are detected, consider the
object 420 presented at a given (e.g., optimal) location and
size so that the edge detectors with the shortest conduction
delay (conduction delay of 1 in the array 400 in FIG. 4)
generate pulses. The pulses 431, 432 arrive to the detector
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node 410 at the same time, triggering the detector 410 to
generate a detection signal 461. A larger object 422, still
centered at the same location, causes a different pair of edge
detectors to generate pulses along different delay lines. The
pulse-pair 441, 442 to the detector node 410 with the delay of
3 units. However, the pulses again arrive simultaneously as
long as the object is centered at the same location. Similarly,
contracting the size of the object (not shown), but keeping it
centered at the same location, maintains the synchrony of
pulse arrival to the detector node 410, and only changing the
absolute latency of arrival. In all these cases, the apparatus
detects the object and generates an output pulse with the
latency that encodes the size of the object.

The apparatus of FIG. 4 responds similarly to an object of
a given size 420 that is shifted to a different location; such as
in the bar 423. A different set of edge detectors 400 conveys
the information about the object along the delay lines 415 to
the detector node 410, yet the pulses 451, 452 arrive simul-
taneously to the detector 410, resulting in the output detect
signal 463. Therefore, the arrangement of delay lines in FIG.
4 allows for encoding and decoding of the object regardless of
its size and location at the same time.

Exemplary Method

More complex objects having e.g., a background of other
objects, are invariantly recognized by a multi-layer system of
delay lines illustrated in an exemplary embodiment of FIG. 5.
These complex objects are constructed of various features—
some of them are elementary (e.g., have edges), while others
are more complex (e.g., have conjunctions of edges). The
delay lines 515, 525, 535 of the detector arrays 500, 510, 520
are configured to provide a capability for a downstream layer
of pulse detector nodes to extract information provided by a
previous layer, and encode the information into the pattern of
relative pulse latencies as further described below with
respect to FIG. S.

In one exemplary variant, as applied to visual recognition
of'an alphabet, the elementary detectors 500 correspond to an
edge detector array; the first detector array 510 corresponds to
a bar detector; the second detectors 520 correspond to angle
detectors; i.e., a detector that is configured to identify a con-
junction of bars (such as detecting corner in letters such as ‘I’
or “T”); and the third detectors 530 correspond to letter detec-
tors (e.g., ‘K,” “H”). Detectors of arrays 510, 520, 530 are also
referred to as the “pulse detector nodes”, the “detector
nodes”, or the “nodes”.

In another variant, the detectors 500 are configured as edge
detectors, while other detectors 510 are configured to detect
two-dimensional (2D) edges at a certain orientation and cer-
tain positions. Yet other detectors 520 detect the 2D edges at
a certain orientation and any position, while other detectors
530 detect corners at any position.

In yet another variant, the invention contemplates use of
subsequent layers of detectors (not shown) that are configured
to detect more complicated objects; e.g., faces, gestures, etc.,
regardless of the position. A myriad of other possible detector
cascades will be recognized by those of ordinary skill given
the present disclosure.

The elementary feature detectors 500 are configured simi-
lar to the edge detectors 200 of FIG. 2. The detectors 500
receive an in input signal (RGB, bitmap, grayscale, etc), and
they generate pulse rasters responsive to a detection of an
edge.

Higher-level detectors 510, 520, 530 (depicted by circles)
are configured to receive pulses as input, and to generate
output pulses based on their dynamic structure. In one variant,
the detectors 510, 520, 530 are configured as coincidence
detectors. In another variant, the detectors 510, 520, 530 are
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configured as integrate-and-fire units of the type well known
in the art, wherein the detectors 510, 520, 530 are configured
to integrate incoming pulses over certain time window and to
produce (‘fire’) a response once a predetermined threshold is
reached. In still another variant, the detectors are configured
using mathematical equations to describe dynamics of neu-
rons (Izhikevich 2007), e.g., Hodgkin-Huxley-type neurons,
quadratic integrate-and-fire neurons. In yet another variant,
the detectors are configured using a combination of two or
more of the aforementioned methods.

Returning now to FIG. 5, the elementary feature (for
example, edge) detectors 500 produce pulsed signals depend-
ing on the presence of edges or other elementary features in
the corresponding positions in the input visual signal. They
generate pulses, which propagate with different delays along
delay lines 515 to a bank of decoders 510 that are configured
to detect more complex features, such as the conjunction of
two edges, invariantly with respect to the location or size.
Only connections from the elementary feature detectors 501,
502 are depicted in the Figure for clarity. The bank of feature
detectors 510 generates pulses with various latencies deter-
mined by the parameters of the features, and these pulses
propagate with different conduction delays to the next layer
520 to detect more complex features. Only connections from
some detectors (511, 521, 531, 512, 522, 532) and only 4
layers are depicted in FIG. 5 to preserve clarity. Pulses propa-
gate to the object feature detectors with appropriate conduc-
tion delays, so that the object detectors encode the objects in
the sensing field into a pattern of relative pulse latencies, and
the parameters of the object affect the time of the appearance
of' the pattern of relative pulse latencies; i.e., as the group lag.

In another embodiment (not shown), the delay lines are
assigned weights, also referred to as “synaptic weights”. The
weights convey the strength of connections and other
attributes of transmission of signals. Instead of pruning/re-
moving connections, the system can modify the connections
according to one or more rules. For example, connections that
result in pulse output of the detector node are strengthened or
weighted more heavily, while connections that do not result in
pulsed output are weakened or weighted less heavily. Other
rules, such as e.g., a spike-timing dependent plasticity rule
(STDP) that modifies the parameters of connections depend-
ing on the timing of incoming pulses and the timing of output
pulses, may be used as well.

In one variant, the conduction delays and the strength of
connections in the apparatus of FIG. 5 are pre-programmed to
achieve the desired functionality. In another variant, the
delays and/or the connection strength are learned via experi-
ence using activity-dependent plasticity (see Izhikevich E.
Polychronization: Computation with Spikes. Neural Compu-
tation, 2006, 18, 245-282, incorporated herein by reference in
its entirety), such as spike-timing dependent plasticity (Sjos-
trom J., W. Gerstner. Spike-Timing Dependent Plasticity.
Scholarpedia, [Online], 2010, 5(2), 1362), also incorporated
herein by reference in its entirety). As objects of different
sizes and at different locations are presented to the detection
system, connections between different pulse-generating
nodes are modified as to achieve the desired functionality of
invariance with respect to the parameters of the objects.

In another variant, several redundant connections with
various delays; e.g., all possible delays, are utilized for each
of the node pair. An object of interest is introduced, and the
detection apparatus begins generating and propagating pulses
along a cascade of detector arrays (e.g., from detector 500 to
510, or from detector 510 to 520, etc.). The delay lines that
convey coincident pulses are kept intact, whereas the lines
that convey non-coincident pulses are pruned/removed. Sub-
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sequently, the same object, but with a different parameter(s),
e.g., at different location, is introduced to the detection sys-
tem, causing pruning/removal of a new set of connections. By
systematically varying parameters of the object, only those
connections that convey coincident pulses remain.

Inyet another variant, the delay lines 515, 525, 535 employ
variable delays that are adaptively adjusted at run time (e.g.,
during operation of the detection system) to produce coinci-
dent pulses when the object of interest is presented at different
locations (or as a different size).

Advantageously, modifying the transmission characteris-
tics (delays, weights) adaptively as described above does not
require pre-programming (hard-wiring) of the detection sys-
tem connection. Similarly, the adaptive learning and configu-
ration of transmission characteristics methodology is appli-
cable to invariant object encoding and detection via latency
coding described in detail below.

Other embodiments of the present invention contemplate
detecting objects in non-visual signals; e.g., phonemes and
words in the auditory signal, objects in infrared or other
invisible spectrum, or tactile objects in somatosensory sig-
nals. In all these cases, the elementary feature detectors
should be modified to detect elementary features of the cor-
responding modality of the sensory input (vision, audio, tac-
tile, etc.).

An exemplary method of detecting a letter is described
below with respect to FIG. 5a. At step 550, an array of
elementary feature detectors (e.g., edge detectors 500 of FIG.
5) receives an input signal (e.g. a visual frame, a digitized
SONAR, RADAR, or tomography image, etc.). At step 552,
the array 500 detects a set of edges corresponding to different
bars composing the letter, e.g. letter ‘A’ in this example. At
step 554 the output pulses generated by the edge detectors are
transmitted to the ‘downstream’ array 510 of feature detec-
tors.

At step 556, detectors of the array 510 detects each of the
bars (e.g., /°, *-’, ‘\) of a predetermined size, and orientation.

At step 558, the output pulses generated by the detector
array 510 are transmitted to the array 520 via a subset of delay
lines 525.

At step 560, detectors of the array 520 detect each of the
intersection of the bars (e.g., corners /-, *-\’, ‘\’) of a pre-
determined orientation.

At step 562, the output pulses generated by the detector
array 520 are transmitted to the array 530 via a subset of delay
lines 535.

At step 564, detectors of the array 530 detect the letter ‘A
of a predetermined size, position and orientation.

At step 566, the output detection signals are generated by
the detector array 530 for further use. Note that different
detectors of the array 530 (e.g., 531, 532) may be configured
to detect a different set of parameters corresponding to the
same object (e.g., letter). That is, the detector 531 is tuned to
detect the upright letter A, while detector 532 is configured to
detect the letter rotated by 90°:

Invariant Object Encoding and Detection Via Latency Coding

Referring now to FIGS. 6-9, a second aspect of object
detection in accordance with the principles of the present
invention is described in detail. The embodiments of the
apparatus of FIGS. 6-9 employ a different mechanism of
objectencoding, where edge detectors: (i) use a larger sensing
field; (ii) are configured to analyze the total area of the sensing
field; and (i1) generate pulses whose delay/latency depends on
the position of the edge within the sensing field. This
approach differs from the approach described above with
respect to FIG. 2, wherein each edge detector generates a
pulse if an edge is present, and the latency of the output pulse
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is assigned a fixed value, independently on the location of the
edge within the sensing field (also referred to as “receptive
field”) of the detector. The sensing field of the detectors 200 is
so small that the detectors 200 are only capable of detecting a
presence of an edge: (i.e., an edge is present or not). As a
result, the detectors 200 do not discriminate between edges
being at different locations within the receptive field of each
individual detector. In contrast to the embodiment of FIG. 2,
the receptive field of detectors 631, 632 of the embodiment of
FIG. 6 (described below) is much larger, so that an object edge
is detectable at a plurality of locations by a single detector.

FIG. 6 illustrates an exemplary embodiment of an appara-
tus that uses pulse latency coding to encode and detect objects
in a manner invariant of the object position. It is appreciated
that a one-dimensional input signal is used in this example for
purposes of illustration only, and without loss of generality.
The sensing field space 600 contains an array of elementary
feature detectors (with only two detectors 631, 632 shown for
clarity). The detectors 631, 632 are configured to generate
pulses in response to the presence of edges. The latency of
each generated pulse depends on the position of the corre-
sponding edge within the sensing field of the detector. The
dependence of latency on position of the edge is depicted as a
locus oflines 611, 612. Points along the lines 611, 612 thatare
closer to the top correspond to a shorter delay (smaller
latency). Although a linear delay distribution 611, 612 is
shown in the exemplary embodiment of FIG. 6, other distri-
butions (e.g., nonlinear distribution, or a stochastic pulse-
generating system with probability distribution function that
depends on the position of the stimulus) may be used as well.

The elementary feature detectors 631, 632 are connected to
the detector 610, which is configured to generate a detection
signal in response to a simultaneous arrival of two pulses. A
one-dimensional bar 621 of the optimal size presented in
raster 605, evokes pulsed responses 641, 642 from the
elementary feature detectors 631, 632. As the pulses 641, 642
have equal latency; they arrive in coincidence at the detector
610, hence evoking a detection signal (the pulsed response
640).

An upward displaced bar 622 produces a pulse raster 606
corresponding to a synchronous pulse pair 651, 652, but with
smaller pulse response latencies, and to generation of a posi-
tive detection signal 650 by the detector 610. Similarly, a
downward displaced bar (not shown) produces a synchronous
pulse pair, but with greater pulse latencies, which is also
detected by the detector 610.

A bar of a different size 623, as in raster 607, causes
generation of pulses 661, 662, each having a different latency,
so that their non-synchronous arrival is ignored by the detec-
tor 610.

In one implementation, a different detector-delay line array
combination (with the transmission from the detector 632
delayed; not shown) is used to detect object of this size (e.g.,
bar 623), invariantly to their position.

FIG. 7 illustrates an exemplary embodiment of an appara-
tus according to the invention that is configured to encode and
detect one-dimensional objects invariant of the object size.
The elementary feature detectors 731, 732 respond to the
presence of edges in their receptive fields by generating
pulses 741, 742 with latencies according to the latency dis-
tributions 711, 712. The latency distributions 711, 712 are
configured such that the resulting pulse latencies are identical
as long as the bar 720 is centered at the given location,
invariant of the size. The pulse pair 741, 742 arrives to the
detector node 710 simultaneously, evoking a detection
response 740. The detector 710 encodes the size of objects
721, 722 into the absolute latency of the detector responses
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740, 750, corresponding to the pulse pairs 741, 742 and 751,
752, respectively, as illustrated in the rasters 705, 706. How-
ever, a stimulus that is not centered at the given (optimal)
location, as with object 723 in raster 707, causes two pulses
761,762 of different latencies which are ignored by the detec-
tor 710. It will be apparent to those skilled in the art that the
object 723 may be detected by another delay line-detector
combination (e.g., when the transmission from 731 is
delayed; not shown) that is configured to detect objects at the
location of the raster 707.

FIG. 8 illustrates one embodiment of an apparatus that
encodes and detects objects invariant of both size and posi-
tion. The apparatus 800 includes an array of edge detectors
(with only two detectors 831, 832 are shown for clarity) that
are configured to the position of the edge into the pulse
response latency according to latency distributions 811, 812,
respectively. The exemplary distributions 811, 812 are con-
figured to produce the smallest latencies when an object edge
is at the optimal position. Pulse latency increases as the edge
moves away from the optimum location. Other distributions
may be used, such as e.g., a nonlinear distribution. The loca-
tions within the visual field that result in minimum pulse
latencies correspond to the optimal object positions. Simi-
larly, the size of the object that produces the smallest latency
corresponds to the optimal object size.

As shown in the pulse rasters 805, 807, a bar of optimal size
evokes synchronous response (pulse pairs 841, 842 and 861,
862, respectively) thereby causing positive detection
responses 840, 860 from the detector 810 invariant to the
position of the bars 821, 823. The detector 810 encodes the
deviation (shift) of the object with respect to the preferred
location into the absolute latency 845, 865, of detection
response pulses 840, 860, respectively.

FIG. 9 illustrates two exemplary embodiments 900, 950
that encode and detect two-dimensional objects invariant of
the object size. The first apparatus 900 includes an 8-by-8
matrix of line detectors, each configured to generate a pulse
whenever a segment of a line of an appropriate orientation is
present in their receptive fields. The generated pulses are
transmitted along respective delay, with the latency indicated
by a numeral inside the box corresponding to each detector.
The pulse detector node (not shown but similar to the detector
node 810 described supra with respectto FIG. 8) is configured
to generate a detection signal upon receipt of sufficiently
great number of coincident pulses from the line detectors.

When a square object 920 is introduced into the input
signal, it elicits pulsed responses from the line detectors that
correspond to the latency of three units, (or slightly larger,
accounting for processing delays at the detector node). A
smaller 921 or larger 922 object causes a different line detec-
tor subset to respond (e.g., the latency one (1) group and
latency four (4) group, respectively). The pulses generated by
the line detectors within each group arrive simultaneously to
the pulse detector node, thereby triggering a detection
response. The size of the square is encoded into the latency of
the response pulse by the pulse detector node.

Another exemplary embodiment 950 shown in FIG. 9 con-
tains four line detectors, 951-954, each connected to a pulse
detector node (not shown). The center of each line detector
951-954 is depicted by a corresponding solid circle and the
receptive area (also referred to as the sensing field) is depicted
by the open rectangle surrounding the corresponding circle.
Each line detector 951-954 generates a pulsed response
whenever a segment of a line of appropriate orientation, cor-
responding to an object, is present in its receptive field. Fur-
thermore, each detector 951-954 encodes deviation of the line
segment position from the center of the receptive field into
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absolute pulse latency, such that the latency is the shortest
when the line segment passes through the center of the respec-
tive line detector sensing field. Accordingly, latency is the
largest when the segment line is proximate an edge of the
detector receptive field.

A square object 970 causes the line detectors 951-954 to
generate pulses that have the shortest latency. The generated
pulses arrive to the pulse detector node at the same time,
thereby resulting in a detection response. A smaller square
971 causes the line detectors to generate synchronous pulses
with a longer latency, compared to the output caused by the
object 970. Similarly, a larger object 972 elicits synchronous
responses in the four line detectors with the latency that is also
longer, compared to the output caused by the object 970.
Therefore, the exemplary encoding apparatus 950 generates
output pulses with the latency that is proportional to the
deviation of the object size from an optimal size value. To
distinguish between two objects that produce the same
latency (i.e., one object being smaller than an optimal size,
and another object being larger than the optimal size) a dif-
ferent latency distribution (e.g. quadratic) and/or another set
of detectors may be used.

Other embodiment of the invention may comprise connec-
tions from edge or line detectors (as in FIGS. 6-10) to a
detector node (or nodes) with different conduction delays.
This way, each edge or line detector encodes the position of
the edge or line into the output pulse latency, and in order for
these pulses to arrive to the detector node at the same time, the
pulses need to be generated at different times, in accordance
with the conduction delays (see Izhikevich E. Polychroniza-
tion: Computation with Spikes incorporated supra. In this
implementation, the encoding apparatus detects objects that
are shifted in position or size. One advantage of such an
approach is that there could be a small number of elementary
feature detectors (edges, lines, etc.) having connections (with
different conduction delays) to a larger number of detector
nodes, so that each detector node is tuned to detect objects of
its own optimal combination of object size, position and
orientation, and it encodes the deviation from the optimal
combination (along one or more parameters) into the pulse
latency of its response.

FIG. 10 illustrates an exemplary embodiment of encoding
apparatus of the invention that is configured to encode and
detect objects invariant to their orientation. The apparatus
1100 of FIG. 10 includes an array of line detectors 1001-1010
each configured to sense line objects at an appropriate orien-
tation (e.g., an optimal or preferred orientation), denoted by a
heavy line inside each of the corresponding boxes in FIG. 10.
In the apparatus of FIG. 10 the line detectors 1001-1010 are
arranged such that their optimal orientations point towards
the center of the array. The numbers inside each square,
corresponding to the respective line detector, denote the con-
duction delay to a pulse detector node (not shown). When an
object 1020 is presented in the input signal, it elicits a pulsed
response in line detectors 1003, 1008, as their optimal orien-
tation matches the orientation of the object 1020. The gener-
ated pulsed responses simultaneously arrive to the pulse
detector node with a delay of three units, thereby causing a
positive detection response by the pulse detector node. As
described above, the actual delay may be somewhat longer
than the delay line delay value (e.g., three units) when
accounting various processing delays.

An object of the same type and size but at a different
orientation (at rotated bar 1021) causes pulsed output by a
different line detector pair 1001, 1006 of the array 1011. The
pulses generated by the line detectors 1001, 1006 arrive to the
pulse detector node simultaneously with a conduction delay
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of one unit (or slightly longer), subsequently causing genera-
tion of a detection signal at the corresponding lag of one by
the pulse detector node.

An object of the same type and size but at a different
location (a shifted bar 1022) elicits pulsed responses from the
line detectors 1002, 1009 of the array 1012. Because these
line detectors correspond to delay lines of different latencies
(e.g., four and two units, respectively), the pulses generated
by the detectors 1002, 1009 do not arrive at the pulse detector
node simultaneously. As a result, the pulse detector ignores
the received pulses and does not produce a positive detection
output signal. This object can be encoded and decoded invari-
antly with respect to position using the methods in FIGS. 1-9.

The exemplary embodiments described above with respect
to FIGS. 1-10 encode information about object parameters
(e.g., size, orientation, position) into a pattern of relative pulse
latencies, which is transmitted along a plurality of communi-
cation channels to a pulse detector node acting acts as a
decoder. The decoder, in turn, generates a pulsed output (de-
tection signal) whenever an object of interest (that is with an
appropriate combination of properties) is present in the input
signal. The latency of the detector output pulse encodes infor-
mation related to the parameters of the object, such as its size,
position, or rotation.

In order to process signals corresponding to complex
objects consisting of multiple object elements, a bank of
elementary decoders, each configured to the appropriate ele-
ment, is used. These decoder banks generate output pulses
with latencies determined by the simpler object features, thus
enabling the object detection system to generate an output
pattern of relative pulse latencies that describe the complex
object identity (e.g., a pattern 131 as shown in FIG. 1). The
timing of the pattern (absolute latency 144 in FIG. 1) indi-
cates the size, position, or rotation of the complex object. In
one embodiment, the detector nodes may be arranged in a
multi-layer cascade (e.g., as in FIG. 5) so the pattern of
relative pulse latencies from one layer is fed into the detector
nodes of the subsequent layer for further processing.

It will be appreciated by those skilled in the arts, that
although objects comprising straight linear features are illus-
trated in FIGS. 1-10 for clarity, approaches described herein
are equally applicable to objects of any arbitrary shape
including these comprising curves and or curved features and
edges, openings, orifices.

Exemplary Uses and Applications of Certain Aspects of the
Invention

The foregoing descriptions of the invention are intended to
beillustrative, and not in any way limiting; those skilled in the
art will appreciate that the invention can be practiced with
various combinations of the functionalities and capabilities
described above, and can include fewer or additional compo-
nents than described above. Certain additional aspects and
features ofthe invention are further set forth below, and can be
obtained for example using the functionalities and compo-
nents described in more detail above.

Embodiments of the present invention described above
with respect to FIGS. 1-10 provide improved apparatus and
methods for object detection that are invariant to predeter-
mined object properties. Specifically, these methods allow
reduction in the number of detectors that are required to detect
the same object for all multitudes of object properties (e.g., a
bar of different size, orientation and at all possible locations).
These improvements advantageously translate into a system
that requires fewer detectors and fewer processing units, com-
pared to the prior art, and that allows taking advantage of the
combinatorial richness of the pulse code.
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Advantageously, exemplary embodiments of the present
invention encode the irrelevant (to the identity of the object)
parameters into group delay of the pattern of relative pulse
latencies. Therefore, the need for additional mechanisms that
scale the object of interest (either up or down) and/or shift the
object into an optimal position is alleviated. Additionally, the
need for redundant detectors that cover all possible ranges of
object locations and sizes is reduced as well.

Object recognition embodiments of the present invention
are useful in a variety of devices including without limitation
prosthetic devices, autonomous and robotic apparatus, and
other electromechanical devices requiring object recognition
functionality. Examples of such robotic devises are manufac-
turing robots (for example, automotive), military, medical
(such as processing of microscopy, x-ray, ultrasonography,
tomography). Examples of autonomous vehicles include rov-
ers, unmanned air vehicles, underwater vehicles, smart appli-
ances (e.g. ROOMBA®), etc.

Embodiments of the present invention are further appli-
cable to a wide assortment of applications including com-
puter human interaction (including for example recognition
of gestures, voice, posture, face, etc), controlling processes
(e.g., an industrial robot, autonomous and other vehicles),
augmented reality applications, organization of information
(e.g., for indexing databases of images and image sequences),
access control (for instance, opening a door based on a ges-
ture, opening an access way based on detection of an autho-
rized person), detecting events (e.g., for visual surveillance or
people or animal counting, tracking), data input, financial
transactions (payment processing based on recognition of a
person or a special payment symbol) and many others.

Advantageously, the present invention can be used to sim-
plify tasks related to motion estimation, such as where an
image sequence is processed to produce an estimate of the
object position (and hence velocity) either at each points in
the image or in the 3D scene, or even of the camera that
produces the images. Examples of such tasks are: egomotion,
i.e., determining the three-dimensional rigid motion (rotation
and translation) of the camera from an image sequence pro-
duced by the camera; following the movements of a set of
interest points or objects (e.g., vehicles or humans) in the
image sequence and with respect to the image plane.

In another implementation, portions of the object recogni-
tion system are embodied in a remote server configured to
perform pattern recognition in data streams for various appli-
cations, such as scientific, geophysical exploration, surveil-
lance, navigation, data mining (e.g., content-based image
retrieval). Myriad other applications exist that will be recog-
nized by those of ordinary skill given the present disclosure.

It will be recognized that while certain aspects of the inven-
tion are described in terms of a specific sequence of steps of
a method, these descriptions are only illustrative of the
broader methods of the invention, and may be modified as
required by the particular application. Certain steps may be
rendered unnecessary or optional under certain circum-
stances. Additionally, certain steps or functionality may be
added to the disclosed embodiments, or the order of perfor-
mance of two or more steps permuted. All such variations are
considered to be encompassed within the invention disclosed
and claimed herein.

While the above detailed description has shown, described,
and pointed out novel features of the invention as applied to
various embodiments, it will be understood that various omis-
sions, substitutions, and changes in the form and details of the
device or process illustrated may be made by those skilled in
the art without departing from the invention. The foregoing
description is of the best mode presently contemplated of
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carrying out the invention. This description is in no way

meant to be limiting, but rather should be taken as illustrative

of the general principles of the invention. The scope of the

invention should be determined with reference to the claims.

5 What is claimed is:

1. An apparatus, comprising:

an encoder configured to receive and encode a first input
representative of a feature into a plurality of pulses, the
plurality of pulses being transmitted along a plurality of
channels, wherein:

the first input representative of the feature comprises a

visual image of the feature;

information related to an identity of the feature is encoded

into a pattern of latencies of the plurality of pulses rela-
tive to one another; and

a parameter associated with the feature is encoded into a

group delay that is (i) common to all pulses within the
plurality of pulses and (ii)) common to all channels
within the plurality of channels.

2. The apparatus of claim 1, wherein the parameter com-
prises one or more of position, size, and orientation of the
feature.

3. The apparatus of claim 1, wherein the group delay is
configured based at least in part on an event.

4. The apparatus of claim 1, wherein the encoder comprises
a preferred parameter range and the group delay is selected
responsive to a deviation of the parameter from a preferred
parameter range.

5. The apparatus of claim 1, further comprising a control
interface, the control interface configured to provide an inter-
face signal based at least in part on detection of a predeter-
mined parameter in the first input.

6. The apparatus of claim 5, wherein the interface signal is
adapted for delivery to a second apparatus selected from the
group consisting of: (i) a robotic apparatus; and (ii) a pros-
thetic apparatus.

7. The apparatus of claim 1, wherein at least a portion of the
plurality of pulses is configured to be generated responsive to
an event.

8. The apparatus of claim 7, wherein the event is selected
from the group consisting of: (i) a temporal change in the first
input; (i) a spatial change in the first input; (iii) a trigger; and
(iv) a timer alarm related to a second event, the second event
preceding the event.

9. The apparatus of claim 1, further comprising at least one
detector coupled to the encoder via the plurality of channels,
the plurality of channels forming a plurality of connections;

wherein:

the plurality of pulses are configured for transmission

through at least a subset of the plurality of connections;

each of the plurality of connections is associated with a

transmission delay configured to effect a coincident
arrival of at least two of the plurality of pulses at the at
least one detector; and

the coincident arrival is invariant to a change in a value of

the parameter.

10. The apparatus of claim 9, wherein information related
to two substantially different parameters of the feature is
transmitted via two different subsets of the plurality of con-
60 nections.

11. The apparatus of claim 10, wherein:

afirst plurality of transmission delays corresponds to a first
subset of the two different subsets;

a second plurality of transmission delays corresponds to a
second subset of the two different subsets; and

the first plurality of transmission delays is not identical to
the second plurality of transmission delays.
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12. The apparatus of claim 9, wherein the at least one
detector is configured to generate a detection signal based at
least in part on the coincident arrival.

13. The apparatus of claim 12, further comprising a pro-
cessing apparatus coupled to the at least one detector and
configured to receive the detection signal and to generate a
response;

wherein:

the detection signal having a detection signal latency con-

figured based at least in part on the group delay; and
the response is configured invariant to the parameter.

14. The apparatus of claim 12, wherein information related
to two different parameters of the feature is transmitted via
two respective different subsets of the plurality of connec-
tions.

15. The apparatus of claim 9, wherein an adjustment of at
least a portion of the plurality of connections is configurable
based at least in part on a second input, the second input
temporally preceding the first input.

16. The apparatus of claim 9, wherein the plurality of
channels comprises one or more virtual channels carried in a
physical transmission medium.

17. The apparatus of claim 1, further comprising a plurality
of'nodes coupled to the encoder via a plurality of transmission
lines and forming a plurality of connections, each of the
plurality of connections associated with a connection delay
forming a plurality of delays; and

wherein the plurality of delays is configured to effect a

coincident arrival of at least two of the plurality of pulses
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to at least one of the plurality of nodes, the coincident
arrival invariant to a change in the parameter.

18. The apparatus of claim 17, wherein the least one of the
plurality of nodes is configured to generate a detection signal
based at least in part on the coincident arrival.

19. The apparatus of claim 17, wherein at least a portion of
the plurality of connections is modified based at least in part
on a second input, the second input temporally preceding the
first input.

20. A method of encoding sensory information, compris-
ing:

encoding an input comprising a representation of a feature

into a pulse group, the pulse group being transmitted
along a plurality of channels;

where the input comprises a visual image of the feature;

wherein:

information related to an identity of the feature is encoded

into a pattern of pulse latencies, relative one pulse to
another within the group; and

encoding a parameter associated with the feature into a

group delay that is common to all pulses within the pulse
group and common to all channels within the plurality of
channels.

21. The method of claim 20, wherein the parameter com-
prises one or more of a position, size, and/or orientation of the
feature.



